Jumat, 02 Desember 2011

Materi Pembelajaran Matematika Kelas 9 sem. Ganjil

Peluang

Peluang atau Kemungkinan atau dikenal juga sebagai probabilitas adalah cara untuk mengungkapkan pengetahuan atau kepercayaan bahwa suatu kejadian akan berlaku atau telah terjadi. Konsep ini telah dirumuskan dengan lebih ketat dalam matematika, dan kemudian digunakan secara lebih luas dalam tidak hanya dalam matematika atau statistika, tapi juga keuangan, sains dan filsafat.

Konsep matematika

Probabilitas suatu kejadian adalah angka yang menunjukkan kemungkinan terjadinya suatu kejadian. Nilainya di antara 0 dan 1. Kejadian yang mempunyai nilai probabilitas 1 adalah kejadian yang pasti terjadi atau sesuatu yang telah terjadi. Misalnya matahari yang masih terbit di timur sampai sekarang. Sedangkan suatu kejadian yang mempunyai nilai probabilitas 0 adalah kejadian yang mustahil atau tidak mungkin terjadi. Misalnya seekor kambing melahirkan seekor sapi.
Probabilitas/Peluang suatu kejadian A terjadi dilambangkan dengan notasi P(A), p(A), atau Pr(A). Sebaliknya, probabilitas [bukan A] atau komplemen A, atau probabilitas suatu kejadian A tidak akan terjadi, adalah 1-P(A). Sebagai contoh, peluang untuk tidak munculnya mata dadu enam bila sebuah dadu bersisi enam digulirkan adalah 1-\frac{1}{6} = \frac{5}{6}.

Kesebangunan 

Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu:
Kompetensi Dasar :
  1. Mengidentifikasi bangun-bangun datar yang sebangun dan kongruen.
  2. Mengidentifikasi sifat-sifat dua segitiga sebangun dan kongruen.
  3. Menggunakan konsep kesebangunan segitiga dalam pemecahan masalah.

Dua Bangun Datar yang Sebangun

Perhatikan Gambar Persegi panjang ABCD dan PQRSmempunyai sisi-sisi yang bersesuaian, yaitu
kotak.jpg kotak2.jpg 1.jpg
Panjang sisi kedua persegi panjang tersebut mempunyai perbandingan yang senilai.
2.jpg
Dengan demikian, sisi-sisi yang bersesuaian dari kedua persegi panjang mempunyai perbandingan yang sama, yaitu
3.jpg
Keempat sudut dari persegi panjang ABCD dan PQRS adalah 90″ sehingga kedua persegi panjang tersebut mempunyai sudut-sudut yang bersesuaian sama besar, yaitu
ﮮ A = ﮮP, ﮮ B = ﮮQ, ﮮC = ﮮ R. dan ﮮ D = ﮮ S
Dapat dikatakan bahrva persegi panjang ABCD sebangun dengan persegi panjang PORS dan ditulis ABCD ~ PQRS.
Dua bangun datar dikatakan sebangun jika memenuhi dua syarat berikut.
  1. Panjang sisi-sisi yang bersesuaian mempunyai perbandingan yang senilai.
  2. Sudut-sudut yang bersesuaian sama besar.

Dua Bangun yang Sama dan Sebangun

Perhatikan dua lembar uang kertas yang nilainya sama. Misalnya Rp.5.000.00. Apakah uang tersebut panjang dan lebarnya sama?
Coba hitunglah perbandingan dari masing-masing sisi-sisinya. Kamu akan memperoleh nilai perbandingan sisi-sisinya sama dengan 1.
Dari hasil perbandingan di atas diperoleh :
  1. sisi-sisi yang bersesuaian dari uangtersebut sarna panjang.
  2. sudut-sudut yang bersesuaian dari uang tersebut sama besar (90o).
Jadi, kedua uang tersebut mempunyai bentuk dan ukuran yang sama. Bangun-bangun yang mempunyai bentuk dan ukuran yang sama disebut bangun-bangun yang kongruen, yakni bangun-bangun yang sama dan sebangun. Bangun-bangun yang kongruen jika diimpitkan akan saling menutupi satu sama lain.
Dua bangun bersisi lurus dikatakan kongruen jika :
  1. sisi-sisi yang bersesuaian dari bangun tersebut sama panjang:
  2. sudut-sudut yang bersesuaian dari bangun tersebut sama besar

Menghitung Panjang Salah Satu Sisi yang Belum Diketahui dari Dua Bangun yang Sebangun

Kita dapat menggunakan sifat dari dua bangun datar yang sebangun. yaitu perbandingan panjang sisi yang bersesuaian senilai untuk menghitung panjang salah satu sisi yang belum diketahui dari dua bangun yang sebangun.
Contoh :
Diketahui dua bangun datar di bawah sebangun. Tentukan nilai x dan y !
te.jpg
Jawab :
Perbandingan sisi yang bersesuaian yang diketahui adalah 21/9 = 7/3 maka sisi yang lain juga harus mempunyai perbandingan yang sama. Nilai x dan y dapat diperoleh dari perbandingan di atas, yaitu :
5.jpg
Jadi, x = 3 cm dan y = 6 cm.

SEGITIGA-SEGITIGA YANG SEBANGUN


Syarat Segitiga-Segitiga Sebangun

Pada Gambar dibawah tampak dua segitiga, yaitu ∆ ABC dan ∆ DEF. Perbandingan panjang sisi-sisi yang bersesuaian pada kedua segitiga tersebut adalah sebagai berikut:  segitiga.jpg Dengan demikian, diperoleh : 6.jpg
Ukurlah sudut-sudut dari kedua segitiga itu dan bandingkan hasil pengukuranmu untuk sudut-sudut yang bersesuaian, yaitu ﮮ A dengan ﮮ D. ﮮ B dengan ﮮ E, dan ﮮ C dengan ﮮF Jika pengukuranmu benar kamu akan memperoleh hasil ﮮ A = ﮮ D ﮮ B = ﮮ E.dan ﮮ C = ﮮ F.
Karena sisi-sisi yang bersesuaian mempunyai perbandingan yang senilai dan sudut yang bersesuaian sama besar maka ∆ ABC dan ∆ DEF sebangun.
Jadi. kesebangunan dua segitiga dapat diketahui cukup dengan menunjukkan bahwa perbandingan panjang sisi-sisi yang bersesuaian senilai. Lakukan pengukuran panjang sisi-sisi dari kedua segitiga tersebut dan bandingkan hasil pengukuranmu untuk sisi-sisi yang bersesuaian. Karena sisi-sisi yang bersesuaian mempunyai perbandingan yang sama dan sudut yang bersesuaian sama besar Maka ∆ ABC sebangun dengan ∆ DEF. Jadi. kesebangunan dua segitiga dapat diketahui cukup dengan menunjukkan bahwa sudut-sudut yang bersesuaian sama besar.
Dari uraian di atas, dapat disimpulkan sebagai berikut.
Dua segitiga dikatakan sebangun jika memenuhi salah satu syarat berikut :
  1. Perbandingan panjang sisi-sisi yang bersesuaian senilai.
  2. Dua pasang sudut yang bersesuaian yang sama besar.

Kesebangunan Khusus dalam Segitiga Siku-Siku

Dalam segitiga siku-siku terdapat kesebangunan khusus. Perhatikan gambar di samping. Pada segitiga siku-siku di bawah.
sigitiga 2.jpg
a AD2 = BD x CD;
b. AB2 = BD x BC;
c. AC2 = CD x CB.
Contoh :
Pada gambar di bawah diketahui AB = 6 cm dan BC. Tentukan
a. AC;
b. AD;
c. BD.
sigitiga 3.jpg
Jawab:
a. AC2 = AB2+BC2
= 62 + 82
= 36+64
= 100
AC = √100 = 10
b. AB2 = AD x AC
62 = AD x 10
36 = AD x l0
AD =36/10
= 3,6 cm
DC = l0 cm – 3,6cm
= 6,4 cm
c. BD2 = AD x DC
= 3,6 x 6,4
= 23,04
BD = √23,04 = 4,8 cm

Menghitung Panjang Salah Satu Sisi yang Belum Diketahui dari Dua Segitiga yang Sebangun

Konsep kesebangunan dua segitiga dapat digunakan untuk menghitung panjang salah satu sisi segitiga sebangun yang belum diketahui. Coba perhatikan contoh berikut! Contoh :
sigitiga 4.jpg Diketahui ∆ ABC sebangun dengan ∆ DEF. Tentukan EF ?
jawab:
10.jpg

Garis-Garis Sejajar pada Sisi Segitiga

Pada Gambar Dibawah, ∆ ABC dan ∆ DEC sebangun. Berikut akan ditentukan perbandingan ruas garis dari kedua segitiga tersebut.
Perhatikan Gambar dibawah.
sigitiga 5.jpg
Dari gambar tersebut terlihat bahwa ruas garis .DE // AB sehingga diperoleh
ﮮ ACB = ﮮ DCE (berimpit)
ﮮ CAB = ﮮ CDE (sehadap)
Karena dua sudut yang bersesuaian dari ∆ ABC dan ∆ DEC sama besar maka kedua segitiga itu sebangun. Karena sebansun maka berlaku
11.jpg
Kedua ruas dikalikan (a + d)(c + b) sehingga diperoleh
12a.jpg
Contoh:
sigitiga 6.jpg Dalam ∆ PRT, PT//QS, hitunglah QR dan ST!
Jawab :
13.jpg

0 komentar:

Poskan Komentar